Francisella tularensis Uses Cholesterol and Clathrin-Based Endocytic Mechanisms to Invade Hepatocytes
نویسندگان
چکیده
Francisella tularensis are highly infectious microbes that cause the disease tularemia. Although much of the bacterial burden is carried in non-phagocytic cells, the strategies these pathogens use to invade these cells remains elusive. To examine these mechanisms we developed two in vitro Francisella-based infection models that recapitulate the non-phagocytic cell infections seen in livers of infected mice. Using these models we found that Francisella novicida exploit clathrin and cholesterol dependent mechanisms to gain entry into hepatocytes. We also found that the clathrin accessory proteins AP-2 and Eps15 co-localized with invading Francisella novicida as well as the Francisella Live Vaccine Strain (LVS) during hepatocyte infections. Interestingly, caveolin, a protein involved in the invasion of Francisella in phagocytic cells, was not required for non-phagocytic cell infections. These results demonstrate a novel endocytic mechanism adopted by Francisella and highlight the divergence in strategies these pathogens utilize between non-phagocytic and phagocytic cell invasion.
منابع مشابه
Francisella targets cholesterol-rich host cell membrane domains for entry into macrophages.
Francisella tularensis is a pathogen optimally adapted to efficiently invade its respective host cell and to proliferate intracellularly. We investigated the role of host cell membrane microdomains in the entry of F. tularensis subspecies holarctica vaccine strain (F. tularensis live vaccine strain) into murine macrophages. F. tularensis live vaccine strain recruits cholesterol-rich lipid domai...
متن کاملFrom the Outside-In: The Francisella tularensis Envelope and Virulence
Francisella tularensis is a highly-infectious bacterium that causes the rapid, and often lethal disease, tularemia. Many studies have been performed to identify and characterize the virulence factors that F. tularensis uses to infect a wide variety of hosts and host cell types, evade immune defenses, and induce severe disease and death. This review focuses on the virulence factors that are pres...
متن کاملFrancisella tularensis enters macrophages via a novel process involving pseudopod loops.
Intracellular bacterial pathogens employ a variety of strategies to invade their eukaryotic host cells. From an ultrastructural standpoint, the processes that bacteria employ to invade their host cells include conventional phagocytosis, coiling phagocytosis, and ruffling/triggered macropinocytosis. In this paper, we describe a novel process by which Francisella tularensis, the agent of tularemi...
متن کاملFrancisella tularensis DeltapyrF mutants show that replication in nonmacrophages is sufficient for pathogenesis in vivo.
The pathogenesis of Francisella tularensis has been associated with this bacterium's ability to replicate within macrophages. F. tularensis can also invade and replicate in a variety of nonphagocytic host cells, including lung and kidney epithelial cells and hepatocytes. As uracil biosynthesis is a central metabolic pathway usually necessary for pathogens, we characterized DeltapyrF mutants of ...
متن کاملActive suppression of the pulmonary immune response by Francisella tularensis Schu4.
Francisella tularensis is an obligate, intracellular bacterium that causes acute, lethal disease following inhalation. As an intracellular pathogen F. tularensis must invade cells, replicate, and disseminate while evading host immune responses. The mechanisms by which virulent type A strains of Francisella tularensis accomplish this evasion are not understood. Francisella tularensis has been sh...
متن کامل